3.1325 \(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=257 \[ -\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (-\left (a^2 (2 A-C)\right )-a b B+3 A b^2\right )}{a^2 d \left (a^2-b^2\right )}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) (a \cos (c+d x)+b)}+\frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (2 a^3 B-a^2 b (4 A+C)-a b^2 B+3 A b^3\right )}{a^3 d \left (a^2-b^2\right )}-\frac {\left (a^4 (-C)+3 a^3 b B-a^2 b^2 (5 A+C)-a b^3 B+3 A b^4\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d (a-b) (a+b)^2} \]

[Out]

-(3*A*b^2-a*b*B-a^2*(2*A-C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1
/2))/a^2/(a^2-b^2)/d+(3*A*b^3+2*a^3*B-a*b^2*B-a^2*b*(4*A+C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*E
llipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/(a^2-b^2)/d-(3*A*b^4+3*a^3*b*B-a*b^3*B-a^4*C-a^2*b^2*(5*A+C))*(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))/a^3/(a-b)/(a+b)^2/d+
(A*b^2-a*(B*b-C*a))*sin(d*x+c)*cos(d*x+c)^(1/2)/a/(a^2-b^2)/d/(b+a*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.80, antiderivative size = 257, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {4112, 3047, 3059, 2639, 3002, 2641, 2805} \[ \frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (-a^2 b (4 A+C)+2 a^3 B-a b^2 B+3 A b^3\right )}{a^3 d \left (a^2-b^2\right )}-\frac {E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (a^2 (-(2 A-C))-a b B+3 A b^2\right )}{a^2 d \left (a^2-b^2\right )}-\frac {\left (-a^2 b^2 (5 A+C)+3 a^3 b B+a^4 (-C)-a b^3 B+3 A b^4\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d (a-b) (a+b)^2}+\frac {\sin (c+d x) \sqrt {\cos (c+d x)} \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) (a \cos (c+d x)+b)} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^2,x]

[Out]

-(((3*A*b^2 - a*b*B - a^2*(2*A - C))*EllipticE[(c + d*x)/2, 2])/(a^2*(a^2 - b^2)*d)) + ((3*A*b^3 + 2*a^3*B - a
*b^2*B - a^2*b*(4*A + C))*EllipticF[(c + d*x)/2, 2])/(a^3*(a^2 - b^2)*d) - ((3*A*b^4 + 3*a^3*b*B - a*b^3*B - a
^4*C - a^2*b^2*(5*A + C))*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a^3*(a - b)*(a + b)^2*d) + ((A*b^2 - a*(
b*B - a*C))*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*(b + a*Cos[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C - B*c*d + A*d^2)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(
c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + (c
*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*c*
d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)
))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 4112

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx &=\int \frac {\sqrt {\cos (c+d x)} \left (C+B \cos (c+d x)+A \cos ^2(c+d x)\right )}{(b+a \cos (c+d x))^2} \, dx\\ &=\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \cos (c+d x))}+\frac {\int \frac {\frac {1}{2} \left (A b^2-a (b B-a C)\right )-a (A b-a B+b C) \cos (c+d x)-\frac {1}{2} \left (3 A b^2-a b B-a^2 (2 A-C)\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \cos (c+d x))}-\frac {\int \frac {-\frac {1}{2} a \left (A b^2-a (b B-a C)\right )-\frac {1}{2} \left (3 A b^3+2 a^3 B-a b^2 B-a^2 b (4 A+C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a^2 \left (a^2-b^2\right )}+\frac {\left (-3 A b^2+a b B+a^2 (2 A-C)\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )}\\ &=-\frac {\left (3 A b^2-a b B-a^2 (2 A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 \left (a^2-b^2\right ) d}+\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \cos (c+d x))}+\frac {\left (3 A b^3+2 a^3 B-a b^2 B-a^2 b (4 A+C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a^3 \left (a^2-b^2\right )}-\frac {\left (3 A b^4+3 a^3 b B-a b^3 B-a^4 C-a^2 b^2 (5 A+C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=-\frac {\left (3 A b^2-a b B-a^2 (2 A-C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 \left (a^2-b^2\right ) d}+\frac {\left (3 A b^3+2 a^3 B-a b^2 B-a^2 b (4 A+C)\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 \left (a^2-b^2\right ) d}-\frac {\left (3 A b^4+3 a^3 b B-a b^3 B-a^4 C-a^2 b^2 (5 A+C)\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 (a-b) (a+b)^2 d}+\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (b+a \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.96, size = 299, normalized size = 1.16 \[ \frac {\frac {4 \sin (c+d x) \sqrt {\cos (c+d x)} \left (a (a C-b B)+A b^2\right )}{\left (a^2-b^2\right ) (a \cos (c+d x)+b)}+\frac {\frac {2 \left (a^2 (2 A+C)-a b B-A b^2\right ) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}+\frac {2 \sin (c+d x) \left (a^2 (2 A-C)+a b B-3 A b^2\right ) \left (\left (a^2-2 b^2\right ) \Pi \left (-\frac {a}{b};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 b (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{a^2 b \sqrt {\sin ^2(c+d x)}}-\frac {8 (-a B+A b+b C) \left ((a+b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-b \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{a+b}}{(a-b) (a+b)}}{4 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^2,x]

[Out]

((4*(A*b^2 + a*(-(b*B) + a*C))*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(b + a*Cos[c + d*x])) + ((2*(-(A*
b^2) - a*b*B + a^2*(2*A + C))*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) - (8*(A*b - a*B + b*C)*((a +
b)*EllipticF[(c + d*x)/2, 2] - b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]))/(a + b) + (2*(-3*A*b^2 + a*b*B +
a^2*(2*A - C))*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d
*x]]], -1] + (a^2 - 2*b^2)*EllipticPi[-(a/b), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a^2*b*Sqrt[Sin[c
 + d*x]^2]))/((a - b)*(a + b)))/(4*a*d)

________________________________________________________________________________________

fricas [F]  time = 171.93, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) +
 a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [B]  time = 15.27, size = 856, normalized size = 3.33 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/a^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(2*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))*b+A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a)-2/a^2*(3*A*b^2-2*B
*a*b+C*a^2)/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))-2*b*(A*b^2-B*a*b+C*a^2)/a^3*(a^2/
b/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*a*cos(1/2*d*x+1/2*c)^2-
a+b)-1/2/(a+b)/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1
/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-
2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2
*c),2^(1/2))-1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b/(a^2-b^2)/(a^2-a*b)*a^3*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2
*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2
*c),2*a/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + d*x))^2,x)

[Out]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**2,x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sqrt(cos(c + d*x))/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________